Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456969

RESUMEN

Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.


Asunto(s)
Núcleo Celular , Mitocondrias , Toxoplasma , Células Eucariotas , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Asociadas a Mitocondrias , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Toxoplasma/citología , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Protozoarias/metabolismo
2.
Front Immunol ; 14: 1290684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38406578

RESUMEN

The transcription factor Kruppel-like factor 4 (KLF4) regulates the expression of immunosuppressive and anti-thrombotic proteins. Despite its importance in maintaining homeostasis, the signals that control its expression and the mechanism of its transactivation remain unclarified. CD55 [aka decay accelerating factor (DAF)], now known to be a regulator of T and B cell responses, biases between pro- and anti-inflammatory processes by controlling autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in cells. The similarity in CD55's and KLF4's regulatory effects prompted analyses of their functional relationship. In vascular endothelial cells (ECs), CD55 upregulation accompanied KLF4 expression via a p-CREB and CREB Binding Protein (CBP) mechanism. In both ECs and macrophages, CD55 expression was essential for KLF4's downregulation of pro-inflammatory/pro-coagulant proteins and upregulation of homeostatic proteins. Mechanistic studies showed that upregulation of KLF4 upregulated CD55. The upregulated CD55 in turn enabled the recruitment of p-CREB and CBP to KLF4 needed for its transcription. Activation of adenylyl cyclase resulting from repression of autocrine C3ar1/C5ar1 signaling by upregulated CD55 concurrently led to p-CREB and CBP recruitment to KLF4-regulated genes, thereby conferring KLF4's transactivation. Accordingly, silencing CD55 in statin-treated HUVEC disabled CBP transfer from the E-selectin to the eNOS promoter. Importantly, silencing CD55 downregulated KLF4's expression. It did the same in untreated HUVEC transitioning from KLF4low growth to KLF4hi contact inhibition. KLF4's and CD55's function in ECs and macrophages thus are linked via a novel mechanism of gene transactivation. Because the two proteins are co-expressed in many cell types, CD55's activity may be broadly tied to KLF4's immunosuppressive and antithrombotic activities.


Asunto(s)
Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Endoteliales/metabolismo , Regulación hacia Arriba , Regiones Promotoras Genéticas
3.
Am J Pathol ; 192(2): 361-378, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35144762

RESUMEN

As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.


Asunto(s)
Factores de Coagulación Sanguínea/biosíntesis , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Receptor de Anafilatoxina C5a/metabolismo , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Animales , Factores de Coagulación Sanguínea/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Receptor de Anafilatoxina C5a/genética , Receptores Proteinasa-Activados/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-32866764

RESUMEN

For over a decade RNA interference (RNAi) has been an important molecular tool for functional genomics studies in parasitic flatworms. Despite this, our understanding of RNAi dynamics in many flatworm parasites, such as the temperate liver fluke (Fasciola hepatica), remains rudimentary. The ability to maintain developing juvenile fluke in vitro provides the opportunity to perform functional studies during development of the key pathogenic life stage. Here, we investigate the RNAi competence of developing juvenile liver fluke. Firstly, all life stages examined possess, and express, core candidate RNAi effectors encouraging the hypothesis that all life stages of F. hepatica are RNAi competent. RNAi effector analyses supported growing evidence that parasitic flatworms have evolved a separate clade of RNAi effectors with unknown function. Secondly, we assessed the impact of growth/development during in vitro culture on RNAi in F. hepatica juveniles and found that during the first week post-excystment liver fluke juveniles exhibit quantitatively lower RNAi mediated transcript knockdown when maintained in growth inducing media. This did not appear to occur in older in vitro juveniles, suggesting that rapidly shifting transcript dynamics over the first week following excystment alters RNAi efficacy after a single 24 h exposure to double stranded (ds)RNA. Finally, RNAi efficiency was found to be improved through use of a repeated dsRNA exposure methodology that has facilitated silencing of genes in a range of tissues, thereby increasing the utility of RNAi as a functional genomics tool in F. hepatica.


Asunto(s)
Fasciola hepatica , Animales , Fascioliasis , Crecimiento y Desarrollo , Platelmintos , Interferencia de ARN
5.
FASEB J ; 34(2): 2105-2125, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908021

RESUMEN

How receptor tyrosine kinase (RTK) growth signaling is controlled physiologically is incompletely understood. We have previously provided evidence that the survival and mitotic activities of vascular endothelial cell growth factor receptor-2 (VEGFR2) signaling are dependent on C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 joint signaling in a physically interactive platform. Herein, we document that the platelet derived and epidermal growth factor receptors (PDGFR and EGFR) are regulated by the same interconnection and clarify the mechanism underlying the dependence. We show that the joint signaling is required to overcome dominant restraint on RTK function by the combined repression of tonically activated PHLPP, SOCS1/SOCS3, and CK2/Fyn dependent PTEN. Signaling studies showed that augmented PI-3KÉ£ activation is the process that overcomes the multilevel growth restraint. Live-cell flow cytometry and single-particle tracking indicated that blockade of C3ar1/C5ar1 or IL-6R signaling suppresses RTK growth factor binding and RTK complex formation. C3ar1/C5ar1 blockade abrogated growth signaling of four additional RTKs. Active relief of dominant growth repression via joint C3ar1/C5ar1 and IL-6R joint signaling thus enables RTK mitotic/survival signaling.


Asunto(s)
Células Endoteliales/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Células Endoteliales/citología , Genes Dominantes , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Fosfoproteínas Fosfatasas/genética , Receptor de Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Interleucina-6/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
6.
J Immunol ; 203(2): 379-388, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31217324

RESUMEN

The involvement of complement in B2 cell responses has been regarded as occurring strictly via complement components in plasma. In this study, we show that Ab production and class switch recombination (CSR) depend on autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in B2 cells. CD40 upregulation, IL-6 production, growth in response to BAFF or APRIL, and AID/Bcl-6 expression, as well as follicular CD4+ cell CD21 production, all depended on this signal transduction. OVA immunization of C3ar1-/-C5ar1-/- mice elicited IgM Ab but no other isotypes, whereas decay accelerating factor (Daf1)-/- mice elicited more robust Ab production and CSR than wild-type (WT) mice. Comparable differences occurred in OVA-immunized µMT recipients of WT, C3ar1-/-C5ar1-/- , and Daf1-/- B2 cells and in hen egg lysozyme-immunized µMT recipients of MD4 B2 cells on each genetic background. B2 cells produced factor I and C3 and autophosphorylated CD19. Immunized C3-/-C5-/- recipients of WT MD4 bone marrow efficiently produced Ab. Thus, B2 cell-produced complement participates in B2 cell activation.


Asunto(s)
Comunicación Autocrina/inmunología , Receptor de Anafilatoxina C5a/inmunología , Receptores de Complemento/inmunología , Animales , Antígenos CD19/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Proteínas del Sistema Complemento/inmunología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
7.
Curr Genomics ; 12(1): 30-43, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21886453

RESUMEN

Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...